Tabulated results; calculation of TC0


The three Tables below provide numerical values for structural and electronic parameters as calculated according to the inter-reservoir Coulomb interaction model, along with comparisons of the measured and calculated optimal transition temperature [1-12],

TC0 = kB−1 β (ση/A)1/2 ζ−1 = kB−1 (Λ/ℓ) e2

The diagram to the right defines the two charge reservoirs (type I – superconducting; type II – mediating), the periodicity d, the interaction distance ζ, and the number of charge-carrying type II layer structures η. The complimentary second and third Tables provide the γ-factor valuations for scaling of the charge fraction σ (with respect to the value σ0 for YBa2Cu3O6.92), and for σ determined through charge allocation.


Table 1. Relevant electronic / structural parameters & calculated TC0

SuperconductorTC0meas
(K)
σζ
(Å)
A
(Å2)
d
(Å)
ηνTC0calc
(K)
YBa2Cu3O6.92 [1]93.78σ02.267714.859611.68022296.36
YBa2Cu3O6.60 [1]630.439σ02.232414.899011.72792264.77
LaBa2Cu3O7–δ [1]97σ02.195215.330611.81802298.00
(Ca0.45La0.55)(Ba1.3La0.7)Cu3Oy [3]80.50.65σ02.129715.011811.81802282.29
YBa2Cu4O8 (12 GPa) [1]104σ02.165814.206012.904222103.19
Tl2Ba2CuO6 [1,4]80σ01.929114.946011.61951279.86
Tl2Ba2CaCu2O8 [1,4]110σ02.013914.861014.659022108.50
Tl2Ba2Ca2Cu3O10 [1,4]130σ02.055914.824817.940032130.33
TlBa1.2La0.8CuO5 [4]45.40.300σ01.903814.74759.11361244.62
Tl0.7LaSrCuO5 [4]370.2125σ01.836814.24538.83081239.63
TlBa2CaCu2O7–δ [1,4]103σ02.081514.873412.754022104.93
TlBa2Ca2Cu3O9–δ [1,4]133.5σ02.031514.768615.871032132.14
HgBa2Ca2Cu3O8+δ [1]135σ01.995914.806015.778232134.33
HgBa2Ca2Cu3O8+δ (25 GPa) [1]145σ01.932613.644914.358232144.51
HgBa2CuO4.15 [1]95σ0+0.0751.921415.03629.50731292.16
HgBa2CaCu2O6.22 [1]127σ0+0.0882.03914.937512.230022125.84
La1.837Sr0.163CuO4–δ [1]380.04081.782814.22686.60291237.47
La1.8Sr0.2CaCu2O6±δ [1]580.051.782914.37619.62182258.35
(Sr0.9La0.1)CuO2 [1]430.051.705115.60583.41021141.41
Ba2Y(Ru0.9Cu0.1)O6 [1]350.052.080917.32084.16181132.21
(Pb0.5Cu0.5.)Sr2(Y/Ca)Cu2O7–δ [1]670.375σ01.996714.577111.82902267.66
Bi2Sr2CaCu2O8+δ (unanneal) [1,4]890.5σ01.75014.520115.44502289.32
(Bi/Pb)2Sr2Ca2Cu3O10+δ [1]1120.5σ01.687214.634018.541032113.02
Pb2Sr2(Y/Ca)Cu3O8 [1, 12]800.5σ01.963714.596415.73342279.39
Bi2(Sr1.6La0.4)CuO6+δ [1]340.11σ01.48814.542212.19951234.81
RuSr2GdCu2O8 [1]500.25σ02.18214.737211.56522250.28
NdFeAsO0.85-y [12]510.0751.65315.54174.25651152.42
GdFeAsO0.85-y [12]53.50.0751.61615.13994.19671154.33
La(O0.92–yF0.08)FeAs [1]260.021.767716.16204.35141124.82
Ce(O0.84–yF0.16)FeAs [1]350.041.681915.87784.30161137.23
Tb(O0.80–yF0.20)FeAs [1]450.051.582214.89964.16601145.67
Nd(O0.70-yF0.30)FeAs [12]51.50.07501.65315.62624.26531152.28
Sm(O0.65–yF0.35)FeAs [1]550.08751.66715.45354.23281156.31
(Sm0.7Th0.3)OFeAs [1]51.50.0751.67115.48974.21641151.94
(Ba0.6K0.4)Fe2As2 [1]370.051.93215.28036.60611236.93
Ba(Fe1.84Co0.16)As2 [1]220.021.89215.68486.48971223.54
FeSe0.977 (7.5 GPa) [2]36.50.0231.42413.11892.59151136.68
Fe1.03Se0.57Te0.43 (2.3 GPa) [2]23.30.0151.59713.90512.11851225.65
K0.83Fe1.66Se2 [2]29.50.03632.024115.24327.05741230.07
Rb0.83Fe1.70Se2 [2]31.50.04632.146315.48677.28811231.78
Cs0.83Fe1.71Se2 [2]28.50.04882.329816.14197.6671229.44
Na0.16(PC)yTiNCl [5,6]7.40.027.673513.033120.5300116.37
Na0.16(BC)yTiNCl [5,6]6.90.027.780313.033120.7435116.28
Li0.08ZrNCl [6]15.10.00381.581711.32339.37331114.35
Li0.13(DMF)yZrNCl [6]13.70.013.40011.323313.01001113.90
Na0.25HfNCl [6]240.01251.65811.14849.89281125.19
Li0.2HfNCl [6]200.00751.59511.11959.4001120.31
Li0.2(NH3)yHfNCl [6]22.50.0252.76211.111712.10001121.42
Ca0.11(NH3)yHfNCl [6]230.02752.73711.125112.05001122.66
Eu0.08(NH3)yHfNCl [6]23.60.012.66911.111711.91401124.28
κ–[ET]2Cu[N(CN)2]Br [1, 11]11.4 [11]0.125σ02.457954.474514.74751211.61
Cs3C60 A15 (0.93 GPa) [7]38.361.53.1949148.9229.98661138.19
Cs3C60 FCC (0.73 GPa) [7]35.21.53.383148.92210.24161136.88
Gated TBG [9]1.830.463.5156063.400111.94
Gated TBG (1.33 GPa) [9]2.860.733.42106673.420113.02
H3S (155 GPa) [8]
H3S (155 GPa) [10]
200
201
3.43
3.5
2.1795
2.180(4)
28.5017
28.50(9)
-
3.0823
11198.5
200.6(3)
LaH10 (169(4) GPa) [10]251(1)6.51.795(5)50.29(27)5.009011249.8(1.3)
LaH10 (192(4) GPa) [10]262(1)6.51.757(7)48.18(36)4.903011260.7(2.0)
CSH7 (267 GPa) [11] 287.7±1.27.51.737(4)48.11(14)1.737011283.6±3.5

Table 2. Scaling γ-factors modifying σ0 (i.e., the value for YBa2Cu3O6.92)

SuperconductorRelative # outer
(2b)
Relative # inner
(2b)
Δval.
(2a)
doping
(2b)
Χ
(2a)
γ
factor
YBa2Cu3O6.92 [1]111111
YBa2Cu3O6.60 [1]1110.43910.439
LaBa2Cu3O7–δ [1]111111
(Ca0.45La0.55)(Ba1.3La0.7)Cu3Oy [3]1111.25/210.65
YBa2Cu4O8 (12 GPa) [1]121/2111
Tl2Ba2CuO6 [1,4]121/2111
Tl2Ba2CaCu2O8 [1,4]121/2111
Tl2Ba2Ca2Cu3O10 [1,4]121/2 111
TlBa1.2La0.8CuO5 [4]111/21.2/210.3
Tl0.7LaSrCuO5 [4]110.4251/210.2125
TlBa2CaCu2O7–δ [1,4]111/2111
TlBa2Ca2Cu3O9–δ [1,4]111/2111
HgBa2Ca2Cu3O8+δ [1]111111
HgBa2Ca2Cu3O8+δ (25 GPa) [1]111111
HgBa2CuO4.15 [1]1111.328911.3289
HgBa2CaCu2O6.22 [1]1111.386011.3860
(Pb0.5Cu0.5.)Sr2(Y/Ca)Cu2O7–δ [1]111/21/21.50.375
Bi2Sr2CaCu2O8+δ (unanneal) [1,4]121/211/21/2
(Bi/Pb)2Sr2Ca2Cu3O10+δ [1]121/211/21/2
Pb2Sr2(Y/Ca)Cu3O8 [1,12]121/211/21/2
Bi2(Sr1.6La0.4)CuO6+δ [1]121/20.221/20.11
RuSr2GdCu2O8 [1]111/211/21/4

Table 3. Charge allocation γ-factors for determining σ

SuperconductorIntra-reservoir
(1a)
inter-reservoir
(1b)
Δval.
(2c)
γchrg/dopant
La1.837Sr0.163CuO4–δ [1]1/21/2-1/41
La1.8Sr0.2CaCu2O6±δ [1]1/21/2-1/41
(Sr0.9La0.1)CuO2 [1]-1/2-1/21
Ba2Y(Ru0.9Cu0.1)O6 [1]1/21/2-1/42
NdFeAsO0.85 [12]1/21/2-1/42
GdFeAsO0.85 [12]1/21/2-1/42
La(O0.92–yF0.08)FeAs [1]1/21/2-1/41
Ce(O0.84–yF0.16)FeAs [1]1/21/2-1/41
Tb(O0.80–yF0.20)FeAs [1]1/21/2-1/41
Nd(O0.70-yF0.30)FeAs [12]1/21/2-1/41
Sm(O0.65–yF0.35)FeAs [1]1/21/2-1/41
(Sm0.7Th0.3)OFeAs [1]1/21/2-1/41
(Ba0.6K0.4)Fe2As2 [1]1/41/2-1/81
Ba(Fe1.84Co0.16)As2 [1]1/41/2-1/81
FeSe0.977 (7.5 GPa) [2]-1/2-1/22
Fe1.03Se0.57Te0.43 (2.3 GPa) [2]1/21/2-1/42
K0.83Fe1.66Se2 [2]1/41/2-1/81, 2
Rb0.83Fe1.70Se2 [2]1/41/2-1/81, 2
Cs0.83Fe1.71Se2 [2]1/41/2-1/81, 2
Na0.16(PC)yTiNCl [5,6]1/41/2-1/81
Na0.16(BC)yTiNCl [5,6]1/41/2-1/81
Li0.08ZrNCl [6]1/41/2-1/81
Li0.13(DMF)yZrNCl [6]1/41/2-1/81
Na0.25HfNCl [6]1/41/2-1/81
Li0.2HfNCl [6]1/41/2-1/81
Li0.2(NH3)yHfNCl [6]1/41/2-1/81
Ca0.11(NH3)yHfNCl [6]1/41/2-1/81
Eu0.08(NH3)yHfNCl [6]1/41/2-1/81
κ–[ET]2Cu[N(CN)2]Br [1, 11]1/4-1/21/8-
Cs3C60 A15 (0.93 GPa) [7]-1/2-1/21
Cs3C60 FCC (0.73 GPa) [7]-1/2-1/21
Gated TBG [9]-1/2-1/2-
Gated TBG (1.33 GPa) [9]-1/2-1/2-
H3S (155 GPa) [8]
H3S (155 GPa) [10]
-
-
1/2
1/2
-
-
1/2
1/2
1, 4
1, 4
LaH10 (169(4) GPa) [10]-1/2-1/21, 3
LaH10 (192(4) GPa) [10]-1/2-1/21, 3
CSH7 (267 GPa) [11] -1/2-1/21, 4, 4

  1. D. R. Harshman, A. T. Fiory and J. D. Dow, J. Phys.: Condens. Matter 23, 295701 (2011)23 349501 (2011).
  2. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 24, 135701 (2012).
  3. D. R. Harshman and A. T. Fiory, Phys. Rev. B 86, 144533 (2012).
  4. D. R. Harshman and A. T. Fiory, J. Phys. Chem. Solids 85, 106 (2015).
  5. D. R. Harshman and A. T. Fiory, Phys. Rev. B 90, 186501 (2014).
  6. D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 28, 2967 (2015).
  7. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 29, 145602 (2017).
  8. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 29, 445702 (2017).
  9. D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 33, 367 (2020).
  10. D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 33, 2945 (2020).
  11. D. R. Harshman and A. T. Fiory, J. Appl. Phys. 131, 015105 (2022).
  12. D. R. Harshman and A. T. Fiory, preprint (2022).

Comments are closed.