The three Tables below provide numerical values for structural and electronic parameters as calculated according to the inter-reservoir Coulomb interaction model, along with comparisons of the measured and calculated optimal transition temperature [1-12],
TC0 = β (ση/A)1/2 ζ−1 = kB−1 (Λ/ℓ) e2/ζ
The diagram to the right defines the two charge reservoirs (type I – superconducting; type II – mediating), the periodicity d, the interaction distance ζ, and the number of charge-carrying type II layer structures η. The complimentary second and third Tables provide the γ-factor valuations for scaling of the charge fraction σ (with respect to the value σ0 for YBa2Cu3O6.92), and for σ determined through charge allocation. The number of interacting type I layers ν is also provided for each material.
Table 1. Relevant electronic / structural parameters & calculated TC0
Superconductor | TC0meas (K) | σ | ζ (Å) | A (Å2) | d (Å) | η | ν | TC0calc (K) |
---|---|---|---|---|---|---|---|---|
YBa2Cu3O6.92 [1] | 93.78 | σ0 | 2.2677 | 14.8596 | 11.6802 | 2 | 2 | 96.36 |
YBa2Cu3O6.60 [1] | 63 | 0.439σ0 | 2.2324 | 14.8990 | 11.7279 | 2 | 2 | 64.77 |
LaBa2Cu3O7–δ [1] | 97 | σ0 | 2.1952 | 15.3306 | 11.8180 | 2 | 2 | 98.00 |
(Ca0.45La0.55)(Ba1.3La0.7)Cu3Oy [3] | 80.5 | 0.65σ0 | 2.1297 | 15.0118 | 11.8180 | 2 | 2 | 82.29 |
YBa2Cu4O8 (12 GPa) [1] | 104 | σ0 | 2.1658 | 14.2060 | 12.9042 | 2 | 2 | 103.19 |
Tl2Ba2CuO6 [1,4] | 80 | σ0 | 1.9291 | 14.9460 | 11.6195 | 1 | 2 | 79.86 |
Tl2Ba2CaCu2O8 [1,4] | 110 | σ0 | 2.0139 | 14.8610 | 14.6590 | 2 | 2 | 108.50 |
Tl2Ba2Ca2Cu3O10 [1,4] | 130 | σ0 | 2.0559 | 14.8248 | 17.9400 | 3 | 2 | 130.33 |
TlBa1.2La0.8CuO5 [4] | 45.4 | 0.300σ0 | 1.9038 | 14.7475 | 9.1136 | 1 | 2 | 44.62 |
Tl0.7LaSrCuO5 [4] | 37 | 0.2125σ0 | 1.8368 | 14.2453 | 8.8308 | 1 | 2 | 39.63 |
TlBa2CaCu2O7–δ [1,4] | 103 | σ0 | 2.0815 | 14.8734 | 12.7540 | 2 | 2 | 104.93 |
TlBa2Ca2Cu3O9–δ [1,4] | 133.5 | σ0 | 2.0315 | 14.7686 | 15.8710 | 3 | 2 | 132.14 |
HgBa2Ca2Cu3O8+δ [1] | 135 | σ0 | 1.9959 | 14.8060 | 15.7782 | 3 | 2 | 134.33 |
HgBa2Ca2Cu3O8+δ (25 GPa) [1] | 145 | σ0 | 1.9326 | 13.6449 | 14.3582 | 3 | 2 | 144.51 |
HgBa2CuO4.15 [1] | 95 | σ0+0.075 | 1.9214 | 15.0362 | 9.5073 | 1 | 2 | 92.16 |
HgBa2CaCu2O6.22 [1] | 127 | σ0+0.088 | 2.039 | 14.9375 | 12.2300 | 2 | 2 | 125.84 |
La1.837Sr0.163CuO4–δ [1] | 38 | 0.0408 | 1.7828 | 14.2268 | 6.6029 | 1 | 2 | 37.47 |
La1.8Sr0.2CaCu2O6±δ [1] | 58 | 0.05 | 1.7829 | 14.3761 | 9.6218 | 2 | 2 | 58.35 |
(Sr0.9La0.1)CuO2 [1] | 43 | 0.05 | 1.7051 | 15.6058 | 3.4102 | 1 | 1 | 41.41 |
Ba2Y(Ru0.9Cu0.1)O6 [1] | 35 | 0.05 | 2.0809 | 17.3208 | 4.1618 | 1 | 1 | 32.21 |
(Pb0.5Cu0.5.)Sr2(Y/Ca)Cu2O7–δ [1] | 67 | 0.375σ0 | 1.9967 | 14.5771 | 11.8290 | 2 | 2 | 67.66 |
Bi2Sr2CaCu2O8+δ (unanneal) [1,4] | 89 | 0.5σ0 | 1.750 | 14.5201 | 15.4450 | 2 | 2 | 89.32 |
(Bi/Pb)2Sr2Ca2Cu3O10+δ [1] | 112 | 0.5σ0 | 1.6872 | 14.6340 | 18.5410 | 3 | 2 | 113.02 |
Pb2Sr2(Y/Ca)Cu3O8 [1, 12] | 80 | 0.5σ0 | 1.9637 | 14.5964 | 15.7334 | 2 | 2 | 79.39 |
Pb2Sr2(Eu/Ca)Cu3O8 [12] | 77 | 0.5σ0 | 1.9887 | 14.6558 | 15.783 | 2 | 2 | 78.23 |
Bi2(Sr1.6La0.4)CuO6+δ [1] | 34 | 0.11σ0 | 1.488 | 14.5422 | 12.1995 | 1 | 2 | 34.81 |
RuSr2GdCu2O8 [1] | 50 | 0.25σ0 | 2.182 | 14.7372 | 11.5652 | 2 | 2 | 50.28 |
NdFeAsO0.85-y [12] | 51 | 0.075 | 1.653 | 15.5417 | 4.2565 | 1 | 1 | 52.42 |
GdFeAsO0.85-y [12] | 53.5 | 0.075 | 1.616 | 15.1399 | 4.1967 | 1 | 1 | 54.33 |
La(O0.92–yF0.08)FeAs [1] | 26 | 0.02 | 1.7677 | 16.1620 | 4.3514 | 1 | 1 | 24.82 |
Ce(O0.84–yF0.16)FeAs [1] | 35 | 0.04 | 1.6819 | 15.8778 | 4.3016 | 1 | 1 | 37.23 |
Tb(O0.80–yF0.20)FeAs [1] | 45 | 0.05 | 1.5822 | 14.8996 | 4.1660 | 1 | 1 | 45.67 |
Nd(O0.70-yF0.30)FeAs [12] | 51.5 | 0.0750 | 1.653 | 15.6262 | 4.2653 | 1 | 1 | 52.28 |
Sm(O0.65–yF0.35)FeAs [1] | 55 | 0.0875 | 1.667 | 15.4535 | 4.2328 | 1 | 1 | 56.31 |
(Sm0.7Th0.3)OFeAs [1] | 51.5 | 0.075 | 1.671 | 15.4897 | 4.2164 | 1 | 1 | 51.94 |
(Ba0.6K0.4)Fe2As2 [1] | 37 | 0.05 | 1.932 | 15.2803 | 6.6061 | 1 | 2 | 36.93 |
Ba(Fe1.84Co0.16)As2 [1] | 22 | 0.02 | 1.892 | 15.6848 | 6.4897 | 1 | 2 | 23.54 |
FeSe0.977 (7.5 GPa) [2] | 36.5 | 0.023 | 1.424 | 13.1189 | 2.5915 | 1 | 1 | 36.68 |
Fe1.03Se0.57Te0.43 (2.3 GPa) [2] | 23.3 | 0.015 | 1.597 | 13.9051 | 2.1185 | 1 | 2 | 25.65 |
K0.83Fe1.66Se2 [2] | 29.5 | 0.0363 | 2.0241 | 15.2432 | 7.0574 | 1 | 2 | 30.07 |
Rb0.83Fe1.70Se2 [2] | 31.5 | 0.0463 | 2.1463 | 15.4867 | 7.2881 | 1 | 2 | 31.78 |
Cs0.83Fe1.71Se2 [2] | 28.5 | 0.0488 | 2.3298 | 16.1419 | 7.667 | 1 | 2 | 29.44 |
Na0.16(PC)yTiNCl [5,6] | 7.4 | 0.02 | 7.6735 | 13.0331 | 20.5300 | 1 | 1 | 6.37 |
Na0.16(BC)yTiNCl [5,6] | 6.9 | 0.02 | 7.7803 | 13.0331 | 20.7435 | 1 | 1 | 6.28 |
Li0.08ZrNCl [6] | 15.1 | 0.0038 | 1.5817 | 11.3233 | 9.3733 | 1 | 1 | 14.35 |
Li0.13(DMF)yZrNCl [6] | 13.7 | 0.01 | 3.400 | 11.3233 | 13.0100 | 1 | 1 | 13.90 |
Na0.25HfNCl [6] | 24 | 0.0125 | 1.658 | 11.1484 | 9.8928 | 1 | 1 | 25.19 |
Li0.2HfNCl [6] | 20 | 0.0075 | 1.595 | 11.1195 | 9.400 | 1 | 1 | 20.31 |
Li0.2(NH3)yHfNCl [6] | 22.5 | 0.025 | 2.762 | 11.1117 | 12.1000 | 1 | 1 | 21.42 |
Ca0.11(NH3)yHfNCl [6] | 23 | 0.0275 | 2.737 | 11.1251 | 12.0500 | 1 | 1 | 22.66 |
Eu0.08(NH3)yHfNCl [6] | 23.6 | 0.01 | 2.669 | 11.1117 | 11.9140 | 1 | 1 | 24.28 |
κ–[ET]2Cu[N(CN)2]Br [1, 11] | 11.4 [11] | 0.125σ0 | 2.4579 | 54.4745 | 14.7475 | 1 | 2 | 11.61 |
Cs3C60 A15 (0.93 GPa) [7] | 38.36 | 1.5 | 3.1949 | 148.922 | 9.9866 | 1 | 1 | 38.19 |
Cs3C60 FCC (0.73 GPa) [7] | 35.2 | 1.5 | 3.383 | 148.922 | 10.2416 | 1 | 1 | 36.88 |
Gated TBG [9] | 1.83 | 0.46 | 3.5 | 15606 | 3.400 | 1 | 1 | 1.94 |
Gated TBG (1.33 GPa) [9] | 2.86 | 0.73 | 3.42 | 10667 | 3.420 | 1 | 1 | 3.02 |
H3S (155 GPa) [8] H3S (155 GPa) [10] | 200 201 | 3.43 3.5 | 2.1795 2.180(4) | 28.5017 28.50(9) | - 3.0823 | 1 | 1 | 198.5 200.6(3) |
LaH10 (169(4) GPa) [10] | 251(1) | 6.5 | 1.795(5) | 50.29(27) | 5.0090 | 1 | 1 | 249.8(1.3) |
LaH10 (192(4) GPa) [10] | 262(1) | 6.5 | 1.757(7) | 48.18(36) | 4.9030 | 1 | 1 | 260.7(2.0) |
CSH7 (267 GPa) [11] | 287.7±1.2 | 7.5 | 1.737(4) | 48.11(14) | 1.7370 | 1 | 1 | 283.6±3.5 |
Table 2. Scaling γ-factors modifying σ0 (i.e., the value for YBa2Cu3O6.92)
Superconductor | Relative # outer (2b) | Relative # inner (2b) | Δval. (2a) | doping (2b) | Χ (2a) | γ factor |
---|---|---|---|---|---|---|
YBa2Cu3O6.92 [1] | 1 | 1 | 1 | 1 | 1 | 1 |
YBa2Cu3O6.60 [1] | 1 | 1 | 1 | 0.439 | 1 | 0.439 |
LaBa2Cu3O7–δ [1] | 1 | 1 | 1 | 1 | 1 | 1 |
(Ca0.45La0.55)(Ba1.3La0.7)Cu3Oy [3] | 1 | 1 | 1 | 1.25/2 | 1 | 0.65 |
YBa2Cu4O8 (12 GPa) [1] | 1 | 2 | 1/2 | 1 | 1 | 1 |
Tl2Ba2CuO6 [1,4] | 1 | 2 | 1/2 | 1 | 1 | 1 |
Tl2Ba2CaCu2O8 [1,4] | 1 | 2 | 1/2 | 1 | 1 | 1 |
Tl2Ba2Ca2Cu3O10 [1,4] | 1 | 2 | 1/2 | 1 | 1 | 1 |
TlBa1.2La0.8CuO5 [4] | 1 | 1 | 1/2 | 1.2/2 | 1 | 0.3 |
Tl0.7LaSrCuO5 [4] | 1 | 1 | 0.425 | 1/2 | 1 | 0.2125 |
TlBa2CaCu2O7–δ [1,4] | 1 | 1 | 1/2 | 1 | 1 | 1 |
TlBa2Ca2Cu3O9–δ [1,4] | 1 | 1 | 1/2 | 1 | 1 | 1 |
HgBa2Ca2Cu3O8+δ [1] | 1 | 1 | 1 | 1 | 1 | 1 |
HgBa2Ca2Cu3O8+δ (25 GPa) [1] | 1 | 1 | 1 | 1 | 1 | 1 |
HgBa2CuO4.15 [1] | 1 | 1 | 1 | 1.3289 | 1 | 1.3289 |
HgBa2CaCu2O6.22 [1] | 1 | 1 | 1 | 1.3860 | 1 | 1.3860 |
(Pb0.5Cu0.5.)Sr2(Y/Ca)Cu2O7–δ [1] | 1 | 1 | 1/2 | 1/2 | 1.5 | 0.375 |
Bi2Sr2CaCu2O8+δ (unanneal) [1,4] | 1 | 2 | 1/2 | 1 | 1/2 | 1/2 |
(Bi/Pb)2Sr2Ca2Cu3O10+δ [1] | 1 | 2 | 1/2 | 1 | 1/2 | 1/2 |
Pb2Sr2(Y/Ca)Cu3O8 [1,12] | 1 | 2 | 1/2 | 1 | 1/2 | 1/2 |
Pb2Sr2(Eu/Ca)Cu3O8 [12] | 1 | 2 | 1/2 | 1 | 1/2 | 1/2 |
Bi2(Sr1.6La0.4)CuO6+δ [1] | 1 | 2 | 1/2 | 0.22 | 1/2 | 0.11 |
RuSr2GdCu2O8 [1] | 1 | 1 | 1/2 | 1 | 1/2 | 1/4 |
Table 3. Charge allocation γ-factors for determining σ
Superconductor | Intra-reservoir (1a) | inter-reservoir (1b) | Δval. (2c) | γ | chrg/dopant |
---|---|---|---|---|---|
La1.837Sr0.163CuO4–δ [1] | 1/2 | 1/2 | - | 1/4 | 1 |
La1.8Sr0.2CaCu2O6±δ [1] | 1/2 | 1/2 | - | 1/4 | 1 |
(Sr0.9La0.1)CuO2 [1] | - | 1/2 | - | 1/2 | 1 |
Ba2Y(Ru0.9Cu0.1)O6 [1] | 1/2 | 1/2 | - | 1/4 | 2 |
NdFeAsO0.85 [12] | 1/2 | 1/2 | - | 1/4 | 2 |
GdFeAsO0.85 [12] | 1/2 | 1/2 | - | 1/4 | 2 |
La(O0.92–yF0.08)FeAs [1] | 1/2 | 1/2 | - | 1/4 | 1 |
Ce(O0.84–yF0.16)FeAs [1] | 1/2 | 1/2 | - | 1/4 | 1 |
Tb(O0.80–yF0.20)FeAs [1] | 1/2 | 1/2 | - | 1/4 | 1 |
Nd(O0.70-yF0.30)FeAs [12] | 1/2 | 1/2 | - | 1/4 | 1 |
Sm(O0.65–yF0.35)FeAs [1] | 1/2 | 1/2 | - | 1/4 | 1 |
(Sm0.7Th0.3)OFeAs [1] | 1/2 | 1/2 | - | 1/4 | 1 |
(Ba0.6K0.4)Fe2As2 [1] | 1/4 | 1/2 | - | 1/8 | 1 |
Ba(Fe1.84Co0.16)As2 [1] | 1/4 | 1/2 | - | 1/8 | 1 |
FeSe0.977 (7.5 GPa) [2] | - | 1/2 | - | 1/2 | 2 |
Fe1.03Se0.57Te0.43 (2.3 GPa) [2] | 1/2 | 1/2 | - | 1/4 | 2 |
K0.83Fe1.66Se2 [2] | 1/4 | 1/2 | - | 1/8 | 1, 2 |
Rb0.83Fe1.70Se2 [2] | 1/4 | 1/2 | - | 1/8 | 1, 2 |
Cs0.83Fe1.71Se2 [2] | 1/4 | 1/2 | - | 1/8 | 1, 2 |
Na0.16(PC)yTiNCl [5,6] | 1/4 | 1/2 | - | 1/8 | 1 |
Na0.16(BC)yTiNCl [5,6] | 1/4 | 1/2 | - | 1/8 | 1 |
Li0.08ZrNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
Li0.13(DMF)yZrNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
Na0.25HfNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
Li0.2HfNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
Li0.2(NH3)yHfNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
Ca0.11(NH3)yHfNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
Eu0.08(NH3)yHfNCl [6] | 1/4 | 1/2 | - | 1/8 | 1 |
κ–[ET]2Cu[N(CN)2]Br [1, 11] | 1/4 | - | 1/2 | 1/8 | - |
Cs3C60 A15 (0.93 GPa) [7] | - | 1/2 | - | 1/2 | 1 |
Cs3C60 FCC (0.73 GPa) [7] | - | 1/2 | - | 1/2 | 1 |
Gated TBG [9] | - | 1/2 | - | 1/2 | - |
Gated TBG (1.33 GPa) [9] | - | 1/2 | - | 1/2 | - |
H3S (155 GPa) [8] H3S (155 GPa) [10] | - - | 1/2 1/2 | - - | 1/2 1/2 | 1, 4 1, 4 |
LaH10 (169(4) GPa) [10] | - | 1/2 | - | 1/2 | 1, 3 |
LaH10 (192(4) GPa) [10] | - | 1/2 | - | 1/2 | 1, 3 |
CSH7 (267 GPa) [11] | - | 1/2 | - | 1/2 | 1, 4, 4 |
- D. R. Harshman, A. T. Fiory and J. D. Dow, J. Phys.: Condens. Matter 23, 295701 (2011); 23 349501 (2011).
- D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 24, 135701 (2012).
- D. R. Harshman and A. T. Fiory, Phys. Rev. B 86, 144533 (2012).
- D. R. Harshman and A. T. Fiory, J. Phys. Chem. Solids 85, 106 (2015).
- D. R. Harshman and A. T. Fiory, Phys. Rev. B 90, 186501 (2014).
- D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 28, 2967 (2015).
- D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 29, 145602 (2017).
- D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 29, 445702 (2017).
- D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 33, 367 (2020).
- D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 33, 2945 (2020).
- D. R. Harshman and A. T. Fiory, J. Appl. Phys. 131, 015105 (2022); also see arXiv_v3 2023
- D. R. Harshman and A. T. Fiory, preprint (2023).