High-TC superconductivity


htc_interaction_image_sm

High transition temperature superconductivity originates from the Coulombic interaction between two adjacent charge reservoirs; the type I reservoir hosts the superconducting condenstate with areal charge density σI/AI (per formula unit) while the type II reservoir contains the mediating charges (with an areal charge density of σII/AII). Given ν type I and η type II interacting component layers (interfaces), the optimal superconducting state is achieved when the two reservoirs are in equilibrium defined by [1],

νσI = ησII .

Remarkably, the optimal transition temperature TC0 is independent of band structure, determined completely by the interacting charge density and the separation between the two reservoirs according to the algebraic expression [1],

TC0 = kB−1 β (ση/A)1/2 ζ−1 = kB−1 (Λ/ℓ) e−2

where ζ is the interaction distance (along the transverse axis), σ/A (=σI/AI) is the optimal areal charge density per type I layer per formula unit for participating charges, η is the number of mediating layers (e.g., the number of cuprate planes), and β (= 0.1075 ± 0.0003 eV Å2) is a universal constant; Λ = e–2β is approximately twice the reduced electron Compton wavelength. Rules for determining σ are discussed here (see also, notes), and the relevant experimental parameters and the calculated values of TC0 are listed under Tabulated results for 50 optimal high-TC materials from seven superconductor families. This pairing interaction model was first introduced in 2011 [1]. and has since been further developed and expanded by Dale R. Harshman and Anthony T. Fiory [2-10].


  1. D. R. Harshman, A. T. Fiory and J. D. Dow, J. Phys.: Condens. Matter 23, 295701 (2011)23 349501 (2011).
  2. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 24, 135701 (2012).
  3. D. R. Harshman and A. T. Fiory, Phys. Rev. B 86, 144533 (2012).
  4. D. R. Harshman and A. T. Fiory, J. Phys. Chem. Solids 85, 106 (2015).
  5. D. R. Harshman and A. T. Fiory, Phys. Rev. B 90, 186501 (2014).
  6. D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. 28, 2967 (2015).
  7. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 29, 145602 (2017).
  8. D. R. Harshman and A. T. Fiory, J. Phys.: Condens. Matter 29, 445702 (2017).
  9. D. R. Harshman and A. T. Fiory, J. Supercond. Nov. Magn. (2019).
  10. D. R. Harshman and A. T. Fiory, submitted (2019).

Comments are closed.